Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Ferrocene compounds: methyl 1'-aminoferrocene-1-carboxylate

Christoph Förster, Daniel Siebler and Katja Heinze*

Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
Correspondence e-mail: katja.heinze@uni-mainz.de

Received 8 April 2010
Accepted 30 June 2010
Online 18 August 2010
The title compund, $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}\right)\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{2}\right)\right]$, features one strong intermolecular hydrogen bond of the type $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ $[\mathrm{N} \cdots \mathrm{O}=3.028$ (2) A] between the amine group and the carbonyl group of a neighbouring molecule, and vice versa, to form a centrosymmetric dimer. Furthermore, the carbonyl group acts as a double H -atom acceptor in the formation of a second, weaker, hydrogen bond of the type $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ [C $\cdots \mathrm{O}=3.283(2) \AA$] with the methyl group of the ester group of a second neighbouring molecule at $\left(x,-y-\frac{1}{2}, z-\frac{1}{2}\right)$. The methyl group also acts as a weak hydrogen-bond donor, symmetry-related to the latter described $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interaction, to a third molecule at $\left(x,-y-\frac{1}{2}, z+\frac{1}{2}\right)$ to form a twodimensional network. The cyclopentadienyl rings of the ferrocene unit are parallel to each other within $0.33(3)^{\circ}$ and show an almost eclipsed $1,1^{\prime}$-conformation, with a relative twist angle of $9.32(12)^{\circ}$. The ester group is twisted slightly [11.33 (8) ${ }^{\circ}$] relative to the cylopentadienyl plane due to the above-mentioned intermolecular hydrogen bonds of the carbonyl group. The N atom shows pyramidal coordination geometry, with the sum of the $X-\mathrm{N}-Y$ angles being $340(3)^{\circ}$.

Comment

The artificial amino acid 1-aminoferrocene-1'-carboxylic acid (Fca) (Heinze \& Schlenker, 2004; Barišić et al., 2002; Butler \& Quayle, 1998) plays an important role in the fields of organometallic oligomers (Khan et al., 2006; Heinze \& Siebler, 2007) and bioorganometallic chemistry as a building block for artificial peptides, and therefore as an organometallic β-turn mimetic in ferrocene conjugates of amino acids and peptides (van Staveren \& Metzler-Nolte, 2004; Kirin et al., 2006). The latter application is based on the favourable inter-ring distance of ferrocene of about $3.3 \AA$, close to the $\mathrm{N} \cdots \mathrm{O}$ distance in β-sheets of peptides. Thus, many Fca derivatives and related compounds have been investigated on the basis of their ability to form hydrogen bonds and in order to study the respective bonding patterns (Okamura et al., 1998; Pavlović et al., 2002, 2003; Heinze \& Schlenker, 2004; Chowdhury et al., 2006; Barišić et al., 2006; Heinze \& Siebler, 2007).

The synthetic procedure for obtaining and spectroscopic data of the title compound, (I), have been described previously by Butler \& Quayle (1998) and Barišić et al. (2002), but any attempts at structural characterization were without success due to twinning problems. It was proposed that (I) crystallizes as a hydrogen-bonded dimer (Butler \& Quayle, 1998), which is now confirmed by the crystal structure analysis presented here (Fig. 1). In contrast with previous attempts, no twinning problem was observed for the crystal studied here.

(I)

The asymmetric unit of (I) consists of one independent molecule. The mean $\mathrm{Fe}-\mathrm{C}$ bond distance is 2.0509 (15) \AA. The mean $\mathrm{C}-\mathrm{C}$ bond distance for the cyclopentadienyl rings is 1.4250 (9) \AA. The Cp rings are parallel to each other within 0.33 (3) ${ }^{\circ}$. The distances of Fe to $C g 1$ (the centroid of Cp 1 , atoms C1-C5) and Cg2 (the centroid of Cp2, atoms C6-C10) are 1.6608 (7) and 1.6481 (7) Å, respectively. The orientation of the Cp rings deviates from the eclipsed $1,1^{\prime}$-conformation by a maximum of $9.32(12)^{\circ}$, as defined by the torsion angles $\mathrm{C}($ any C atom in Cp 1$)-C g 1-C g 2-\mathrm{C}($ any C atom in Cp 2$)$, where 0° describes the fully eclipsed and 36° the fully staggered conformation. The dihedral angle between the mean plane of C6-COOMe and the Cp2 mean plane is $11.33(8)^{\circ}$, defined by non-H atoms. This is probably due to the intermolecular hydrogen bonds (see below). Atoms H1 and H2 of the amine group could be located reliably and refined with restrained $\mathrm{N}-\mathrm{H}$ bond lengths (Table 1). The sum of the $X-$ $\mathrm{N}-Y$ angles [340(3) ${ }^{\circ}$] quantifies the pyramidal geometry of the amine group. The bond between atoms C6 and C11 shows some π character, due to extension of the $\mathrm{Cp} \pi$ system to the $\mathrm{C}=\mathrm{O}$ group. The same characteristics can be found for the $\mathrm{N} 1-\mathrm{C} 1$ bond, where the distance is between a single and a double bond (Allen et al., 1987). Similar geometric parameters

Figure 1
A view of the dimer of (I), connected via pairs of intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bonds (dashed lines), showing the atomnumbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed arrows indicate $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bonds to neighbouring molecules. [Symmetry codes: (i) $-x,-y,-z+1$; (ii) x, $-y-\frac{1}{2}, z+\frac{1}{2}$.]

Figure 2
A partial packing diagram of the dimers of (I), viewed parallel to the a axis. Hydrogen bonds are indicated by dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
for partial double bonds were also found for related compounds, viz. Fc-NH ${ }_{2}$ (Heinze \& Schlenker, 2004), FcCOOMe (Beck et al., 2001) and MeOOC-NH-Fc-COOMe (Pavlović et al., 2002).

As mentioned above and proposed by Butler \& Quayle (1998), (I) forms a centrosymmetric dimer with a neighbouring molecule at $(-x,-y,-z+1)$, connected via a pair of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bonds between the amine and carbonyl groups (Fig. 1 and Table 2). The O atom of the ester group of (I) acts as a double H -atom acceptor in the formation of another hydrogen bond of the type $\mathrm{C} 12-$ $\mathrm{H} 12 A \cdots \mathrm{O} 2=\mathrm{C} 11$ with a second at neighbour $\left(x,-y-\frac{1}{2}\right.$, $\left.z-\frac{1}{2}\right)$. Furthermore, the methyl group interacts, symmetryrelated to the latter described hydrogen bond, with a third molecule at ($x,-y-\frac{1}{2}, z+\frac{1}{2}$) in the latter described fashion. In conclusion, each dimer is connected to four other dimers, which leads to the formation of a two-dimensional network parallel to the $b c$ plane along the 2_{1} screw axis (b axis) and the c-glide plane (Table 2 and Fig. 2).

Experimental

Boc-NH-Fc-COOMe ($2.19 \mathrm{~g}, 6.1 \mathrm{mmol}$) was dissolved in dichloromethane $(20 \mathrm{ml})$ and trifluoroacetic acid $(20 \mathrm{ml})$ was added at 273 K . The resulting red solution was warmed to room temperature and stirred for 2 h . The solvent was removed in vacuo, and the residue was dissolved in water (200 ml) and washed with diethyl ether ($3 \times$ 50 ml). The water layer was made alkaline (pH 8) by the addition of 5% aqueous NaOH solution and extracted with ethyl acetate ($3 \times$ 100 ml) until the water layer was nearly colourless. The organic layer was dried over MgSO_{4} and the solvent removed in vacuo (yield 89%, $1.40 \mathrm{~g}, 5.4 \mathrm{mmol})$. The product, (I) (20 mg), was dissolved in ethyl acetate (3 ml) and hexane (1 ml) was added. Crystallization at 277 K yielded the title compound, (I), as orange plates.

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}\right)\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{2}\right)\right]$	$V=1069.66(3) \AA^{3}$
$M_{r}=259.08$	$Z=4$
Monoclinic, $P 2_{1} / c$	Mo $K \alpha$ radiation
$a=13.72031(18) \AA$	$\mu=1.39 \mathrm{~mm}^{-1}$
$b=7.34436(10) \AA$	$T=173 \mathrm{~K}$
$c=11.04962(14) \AA$	$0.30 \times 0.20 \times 0.08 \mathrm{~mm}$
$\beta=106.1201(7)^{\circ}$	

Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan
(MULABS; Spek, 2009)
$T_{\text {min }}=0.680, T_{\text {max }}=0.897$
25686 measured reflections 2763 independent reflections 2425 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.077$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.071$
H atoms treated by a mixture of independent and constrained
$S=1.07$
2763 reflections
153 parameters
2 restraints
$\Delta \rho_{\max }=0.33$ e \AA^{-3}
$\Delta \rho_{\min }=-0.34 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

C6-C11	$1.469(2)$	O1-C12	$1.4501(18)$
C11-O2	$1.2133(17)$	N1-C1	$1.396(2)$
C11-O1	$1.3390(17)$	N1-H2	$0.869(16)$
O2-C11-O1	$123.03(13)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1$	$112.4(17)$
O2-C11-C6	$124.03(13)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 2$	$115.1(16)$
O1-C11-C6	$112.94(12)$	$\mathrm{H} 1-\mathrm{N} 1-\mathrm{H} 2$	$113(2)$
C11-O1-C12	$115.59(12)$		

Table 2
Hydrogen-bond geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.831(16)$	$2.21(2)$	$3.028(2)$	$167(2)$
$\mathrm{C} 12-\mathrm{H} 12 A \cdots \mathrm{O}^{\mathrm{ii}}$	0.98	2.49	$3.283(2)$	138
Symmetry codes: (i) $-x,-y,-z+1 ;$ (ii) $x,-y-\frac{1}{2}, z+\frac{1}{2}$.				

Symmetry codes: (i) $-x,-y,-z+1$; (ii) $x,-y-\frac{1}{2}, z+\frac{1}{2}$.

The positions of all H atoms, except those of the amine group (H1 and H 2), were generated with appropriate geometric constraints and allowed to ride on their respective parent C atoms, with $\mathrm{C}-\mathrm{H}=$ $1.00 \AA(0.98 \AA$ for methyl C -H$)$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\left[1.5 U_{\text {eq }}(\mathrm{C})\right.$ for methyl H atoms]. The H atoms of the amine group were found in a difference Fourier map and refined with bond lengths restrained to 0.87 (2) Å.

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2; data reduction: $A P E X 2$; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Version 2.3; Macrae et al., 2006); software used to prepare material for publication: SHELXTL.

The authors thank Regine Jung-Pothmann for the data collection.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: EM3033). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Barišić, L., Čakić, M., Mahmoud, K. A., Liu, Y., Kraatz, H.-B., Pritzow, H., Kirin, S. I., Metzler-Nolte, N. \& Rapić, V. (2006). Chem. Eur. J. 12, 49654980.

metal-organic compounds

Barišić, L., Rapić, V. \& Kovač, V. (2002). Croat. Chem. Acta, 75, 199210.

Beck, W., Woisetschläger, O. E. \& Mayer, P. (2001). Z. Kristallogr. New Cryst. Struct. 213, 403-404.
Bruker (2006). APEX2. Version 2.0. Bruker AXS Inc., Madison, Wisconsin, USA.
Butler, I. R. \& Quayle, S. C. (1998). J. Organomet. Chem. 552, 63-68.
Chowdhury, S., Schatte, G. \& Kraatz, H.-B. (2006). Angew. Chem. Int. Ed. 45, 6882-6884.
Heinze, K. \& Schlenker, M. (2004). Eur. J. Inorg. Chem. pp. 2974-2988. Heinze, K. \& Siebler, D. (2007). Z. Anorg. Allg. Chem. 633, 2223-2233.
Khan, M. A. K., Thomas, D. S. \& Kraatz, H.-B. (2006). Inorg. Chim. Acta, 359, 3339-3344.

Kirin, S. I., Kraatz, H.-B. \& Metzler-Nolte, N. (2006). Chem. Soc. Rev. 35, 348354.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Okamura, T., Sakauye, K., Ueyama, N. \& Nakamura, A. (1998). Inorg. Chem. 37, 6731-6736.
Pavlović, G., Barišić, L., Rapić, V. \& Kovač, V. (2003). Acta Cryst. C59, m55m57.
Pavlović, G., Barišić, L., Rapić, V. \& Leban, I. (2002). Acta Cryst. E58, m13m 15 .
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Staveren, D. R. van \& Metzler-Nolte, N. (2004). Chem. Rev. 104, 5931-5985.

